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The lift and drag forces on an isolated particle resulting from an oscillating wall-
bounded flow, are approximated using direct numerical simulation and extrapolation
techniques. We also confirm the existence of anomalies in the lift force, which arise
from the interaction of the vortical field with the particle. Anomalies can also occur
for computational reasons and these are discussed as well.

This study was motivated by a long-standing question about the importance of lift
forces in the dynamics of sediments in oceanic settings. To answer this question we
use the numerically generated data as well as extrapolations to compute the ratio
of the lift to buoyancy forces on a particle. This analysis suggests that for particles
and oceanic conditions typical of the nearshore, the lift force can play a role in the
dynamics of sedimentary beds.

1. Introduction
The study of transport of precipitated and partially suspended particles in os-

cillatory wall-bounded flows, such as in the boundary layer of oceans, lakes and
some rivers, is fundamental to understanding the dynamics of sediment, pollutants,
and the motion of biogenic agents in these settings. In addition to its environmen-
tal implications, the study of transport in the boundary layer is also relevant to
engineering issues in coastal environments, such as coastal erosion, the design and
maintenance of off-shore structures, and the interaction of sea beds with buried pipes
and transmission lines.

Two central issues in sediment transport are the processes of particle dislodgement
and suspension. An understanding of these depend, at a fundamental level, on having
a comprehensive picture of the quantitative and qualitative aspects of the forces
resulting from the fluid on the particles, namely, lift, drag and buoyancy (see Sleath
1984; Fredsøe & Deigaard 1992 chapter 7; Nielsen 1992 chapter 2). Certainly, drag
forces are important in initiating and maintaining bed load movement. Models for the
formation and evolution of sedimentary beds, such as those appearing in Horikawa
(1981), Dyer & Soulsby (1988), Fredsøe & Deigaard (1992), Restrepo & Bona (1995)
and Restrepo (2001), crucially depend on the relationship between the flow velocity
and the shearing of erodible beds. We would expect lift forces to be important in
the dislodgement and suspension of particles. However, our present knowledge of
fundamental aspects of these forces, even when consideration is limited to a single
particle, is incomplete. We know little about forces on a single particle in an oscillating
flow and thus about the contribution of the lift to the dynamics of the particle. We
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know even less about the role played by the drag, lift and buoyancy forces in the
dynamics of erodible beds containing many particles.

An understanding of lift and drag forces on particles is also important in a variety of
chemical engineering and industrial applications. Interest in the geophysical as well as
in the industrial problems has spawned a large number of studies, including Rubinov
& Keller (1961), Saffman (1965), Hall (1968), Harper & Chen (1968), Dandy & Dyer
(1990), Cherukat & McLaughlin (1993), Cherukat, McLaughlin & Graham (1994),
Lovalenti & Brady (1995), Sakamoto & Haniu (1995), Mollinger & Nieuwstadt (1996)
Niño & Garcia (1996), Wang et al. (1997), Kim, Elghobashi & Sirignano (1998), and
Kurose & Komori (1999). In addition to these are Cox & Hsu (1977), Asmolov
(1990) and McLaughlin (1993), in which estimates of the lift force on a particle
neighbouring a bounding wall under the action of a steady flow are computed. Also
of direct relevance is the asymptotic estimate in Asmolov & McLaughlin (1999) of
the lift on a sphere in an oscillating linear shear flow.

A few laboratory measurements have been made of the drag on spheres placed in
the neighbourhood of a wall subjected to oscillatory flows. Among them are those in
Ponce-Campos & Brater (1985). Measurements of the lift and drag forces on isolated
spheres in oscillatory flows, as well as of particles over packed beds, were reported in
Rosenthal & Sleath (1986). To our knowledge, these are the only experimental studies
to date. Rosenthal & Sleath (1986 referred to as RS hereinafter) is the inspiration
behind this study. Our long-term objective is to understand the mechanics of particle
suspension and dislodgement in wall-bounded oscillatory flows by numerical means,
experiment and theory. A logical starting point is to measure the lift and drag forces
of a single stationary particle sitting on the bottom wall in an oscillating flow. In
doing so, we extend the lift measurements of RS to a larger parameter range than
was practical at the time their study was performed.

Several constraints limited the experiments in RS. First, since typical sediment
particles are small, the forces to be measured were difficult to resolve, the experiments
were performed in a regime corresponding to gravel-sized particles, rather than typical
sand-sized particles; secondly, practical constraints limited the parameter coverage
of the experiments; thirdly, some of the measurements did not provide a qualitative
description of certain aspects of the flow. These would have been useful in explaining
certain experimental outcomes.

Here, we use numerical simulation of the Navier–Stokes equations for an incom-
pressible fluid in three space dimensions to perform ab initio calculations of the
forces on isolated particles, circumventing some of the issues in obtaining these forces
through experiments or asymptotic analysis. Unlike the calculations of lift in oscilla-
tory flows, such as those in Cherukat & McLaughlin (1993), Cherukat et al. (1994),
Asmolov & McLaughlin (1999), ours are not restricted to order unity Reynods num-
bers or to disparate diffusive, convective and oscillatory length scales. Naturally, our
calculations have practical restrictions on the range of the Reynolds number and
the period of oscillation of the forcing. As we shall see, however, these restrictions
accommodate a range of parameters corresponding to flows of physical importance
and scientific interest.

In § 2, we describe the flow and its non-dimensionalization. The numerical method-
ology is presented in § 3. The results of the measurements are summarized in § 4.
Section 4 also describes important new qualitative features of the flow particular to
the setting under scrutiny. Section 5 discusses the implications of our results in the
sediment dynamics setting, and § 6 summarizes our findings. The raw data appear in
the Appendix.



Forces on particles in boundary layers 329

2. Description of the flow
We consider the lift and drag forces on a spherical particle that is at rest on or

near a bed of infinite extent when subjected to a wave-induced oscillatory boundary-
layer flow. Assuming the direction of wave propagation to be x, and the bed-normal
direction to be z, we describe the velocity profile, in the absence of a sphere, by

û = U

[
sin

(
kx− 2πt

T

)
− e−βz sin

(
kx− 2πt

T
+ βz

)]
, (2.1)

where k is the wavenumber, T is the period of oscillation, and β =
√
π/νT , is the

inverse Stokes-layer thickness. In the present study, we consider only the case of zero
wavenumber.

We are interested primarily in flow conditions that occur in sediment transport
generated by the action of nearshore surface waves. Thus, we focus on periods T in
the range 1–15 s, particle diameters D no larger than 1.0 mm, and velocity amplitudes
lower than about 1 m s−1. Simulations for parameters in these ranges are difficult
to perform because of the spread in the scales required to resolve the flow; the
number of advective time units required to resolve the period must increase with
the period. For long periods, the number is substantial. Likewise, computations can
become expensive because of the need to resolve several disparate length scales in the
dynamics.

There are two length scales in the direction perpendicular to the bottom (wall). The
first is determined by the particle diameter D. The second scale is determined by the
oscillatory (Stokes) boundary layer, which is proportional to

√
νT . In the direction

parallel to the wall, two length scales can be defined as well. One scale is again
the diameter D; the other, associated with vortex formation, shedding and potential
interaction, is determined by the period T and velocity U. For sinusoidal motion, this
distance is roughly

Lex =
UT

2π
, (2.2)

corresponding to the excursion of a particle convected by the far-field base flow.
(An ejected vortex ring can potentially travel further.) For long periods, Lex is much
greater than the scale D of the particle. Long periods require large enough domain
sizes to allow disturbances (e.g. vortices) to propagate away from the particle. For
moderate periods, it suffices to model the flow by using periodic boundary conditions
in the direction parallel to the wall. In this case, the simulation domain does not have
to be extremely large in order to avoid interactions between disturbances (periodic
‘wrap-around’). For longer periods, domains based on the use of periodic boundary
conditions become prohibitively expensive computationally.

Choosing the particle diameter D, velocity amplitude U and convective time D/U
as respective characteristic length, velocity and time scales, we obtain the non-
dimensionalized form of the Navier–Stokes equations

∂u

∂t
+ u · ∇u = − 1

ρ0

∇p+
1

Re
∇2u, (2.3)

∇ · u = 0. (2.4)

Here, we assume that the independent coordinates (x, y, z, t) have been scaled by
respective characteristic length and time scales. The Reynolds number,

Re ≡ UD/ν, (2.5)
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is one of two independent parameters characterizing this flow. We choose as a second
independent parameter the non-dimensional period

τ ≡ TU/D, (2.6)

which is also referred to as the Keulegan–Carpenter number. Another independent
parameter is ε, which denotes the non-dimensionalized gap between the bottom of
the sphere and the wall. In addition to these parameters, an important dependent pa-
rameter that characterizes the base flow is the non-dimensional Stokes-layer thickness

δ ≡
√

τ

πRe
. (2.7)

Finally, when computing the potential response of the sphere to the lift and drag
forces, we also must consider the ratio

γ ≡ ρ0

ρ− ρ0

,

which involves the density of the fluid, ρ0, and the density of the particle, ρ.
Over each time cycle, we record the lift and drag force values. These values are then

used to define the maximum and minimum lift and drag coefficients over each time
cycle. These coefficients constitute the primary result from a given simulation. In the
dimensional variables, we let Fx and Fz denote the drag and lift force, respectively.
Then, the coefficients CL and CD are defined by

CL =
Fz

1
2
Aρ0U2

,

CD =
Fx

1
2
Aρ0U2

, (2.8)

where A = 1
4
πD2 is the cross-sectional area.

3. Numerical approximation of the flow
Numerical solutions to (2.4) are based on the PN −PN−2 spectral element method,

which is a high-order weighted residual technique that employs compatible trial and
test spaces for the velocity and pressure (see Maday & Patera 1989; Fischer 1997).
The computational domain is partitioned into K hexahedral elements, which may
be deformed by using isoparametric mappings. Within each element, velocity and
pressure are represented in local Cartesian coordinates by tensor-product Lagrange
polynomials of degree N and N − 2, respectively. C0 continuity is enforced across
element interfaces for velocity, while the pressure is allowed to be discontinous. At
each time step, the momentum equations are advanced by first computing a convective
substep, followed by a linear Stokes solve for the viscous and pressure terms. The
pressure and velocity in the Stokes problem are decoupled through an additional
time-splitting after discretization in space, such that ad hoc boundary conditions for
pressure are avoided. The overall scheme is third-order accurate in time. Full details
of the discretization and solution method may be found in Fischer (1997), Fischer &
Mullen (2001) and Maday, Patera & Rønquist (1990).

The computational domain consisted of a rectangular volume with x ∈ [− 1
2
L, 1

2
L],

y ∈ [0,−5.5], and z ∈ [0, 7.8]. For τ 6 104, periodic boundary conditions were
imposed in the x direction. In this case, we must have L > τ/2π to ensure that
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(a) (b)

Figure 1. (a) Spectral element distribution in the symmetry plane of the short computational
domain. (b) A close-up near the sphere showing the associated Gauss–Lobatto grid for N = 5.

vortices shed from the particle do not re-encounter the particle as they pass across
the periodic boundary. We chose L = 24 for τ < 56 and L = 55 otherwise. To reduce
the computational costs, symmetry was imposed at y = 0. Experimental observations
under similar conditions indicated that these flows should retain bilateral symmetry in
the spanwise direction (see Acalar & Smith 1987). This assumption was validated by
comparing lift versus time for the (Re, τ, ε) = (500, 48, 0.0156) case with and without
the symmetry assumption. Symmetry was also applied at y = −5.5 and z = 7.8,
as this is a standard approach for imposing minimally invasive far-field boundary
conditions. Homogeneous Dirichlet boundary conditions were applied on the wall at
z = 0 and on the particle surface. The computational domain and its discretization
are depicted in figure 1.

For the periodic case, the pressure is expressed as

p = p̃(x, y, z, t) + p0(x, t), (3.1)

p0 :=
2πx

τ
cos

(
2πt

τ

)
,

where p0 supplies the time-dependent mean pressure gradient, which drives the flow,
and p̃ is the spatially periodic perturbation computed as the solution of the Stokes
problem. The initial condition for the velocity is zero.

For large values of τ, it is difficult to avoid the effects of periodic wrap-around,
that is, to have L > τ/2π. This scale disparity would force us to use unusually
large computational domains, which would be a drain on computational storage, as
well as computational time, since the simulations become very long. To overcome
these difficulties, we alternate inflow (Dirichlet) and outflow (Neumann) boundary
conditions on each end of the domain in accordance with the predominant flow
direction. This approach is reasonable under the assumption that vorticity carried
sufficiently far from the particle does not return when the flow reverses. This will be
true when there is sufficient time for decay or when vortices have a mild amount of
forward progression. Therefore, for 104 6 τ 6 400, the initial and boundary conditions
at x = ± 1

2
L are based on the non-dimensional form of (2.1), and the forcing term p0

is set to zero. The lift versus time for this approach was compared with the periodic
results at τ = 104. No discernible difference was detected.

The process of generating and obtaining the lift and drag datum is described as
follows. Unless otherwise indicated, all simulations start with zero initial conditions.
The oscillatory forcing is impulsively started at this initial time. Each simulation is
run until a steady pattern in the lift emerges. For large periods (τ > 10), this typically
occurs in fewer than six cycles. We note that, while it is tempting to use the settled
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Re CLT CLV CLP

50 0.111 0.105 0.060 0.057 0.051 0.048
100 0.078 0.074 0.036 0.033 0.042 0.041
150 0.088 0.080 0.032 0.029 0.056 0.051

Table 1. Comparison of lift coefficients as a function of the Reynolds number Re with the data
from Kim et al. (1998) (left-hand columns) and present (right-hand columns).

flow field for one value of τ as the initial condition for the next, such a restart
approach can lead to spurious results. This point is discussed further in § 4.

For the production simulations, the polynomial degree was N = 5. Convergence was
checked by comparing the lift results with those obtained with N = 7 for the particular
case (Re, τ, ε) = (300, 16, 0.25). For the short-domain simulations, the number of
spectral elements was K = 1828, corresponding to 234 359 velocity points and 116 992
pressure points. For the longer domains, we used K = 2836, corresponding to 362 339
velocity points and 181 504 pressure points. The simulations were performed on a
eight-node Compaq Linux cluster with 500 MHz Alpha processors, using MPI for
internode communication. The (Re, τ, ε) = (300, 1, 0.0156) case required 80 time steps
and approximately 15 CPU-minutes per period. For (Re, τ, ε) = (100, 400, 0.0156), the
number of steps per period was 66 667, and the simulation time was 3.7 days per
period.

4. Lift and drag measurements
We describe here some qualitative aspects of the computed lift and drag forces.

We first present results of benchmark calculations that are aimed at establishing
confidence in the numerical approach.

4.1. Benchmark calculations

Two benchmark calculations were performed. In the first, we computed the lift
forces on two spheres in a three-dimensional steady flow, following Kim et al. (1998,
referred to as KES hereinafter). In the second, we compare the calculations of the lift
to experimental data obtained by Rosenthal & Sleath in their oscillatory flow rig.

The physical set-up of KES was two spheres, sitting side by side with a gap between
them. The steady flow was normal to the axis connecting the centres of the spheres.
This situation was mimicked in the present code by changing the boundary condition
on the wall to a symmetry condition, setting the boundary condition at x = − 1

2
L

to unit inflow and the boundary condition at x = 1
2
L to outflow. Table 1 shows a

comparison of the present calculations for the case ε = 0.25 with those in KES. The
KES data was obtained from their figure 11, p. 481. The table shows close agreement
for the total lift coefficient (CLT ) and its constituent viscous (CLV ) and pressure (CLP )
contributions.

The comparison with the oscillatory data of RS is also for the case with ε = 0.25.
The Reynolds number is varied while the Stokes-layer thickness is kept fixed such that
βD = 14. The maximum and minimum lift coefficients as a function of Re are plotted
in figure 2. The dashed lines represent the computed coefficients, whereas the solid
lines connect the values obtained from figure 7, p. 457 of RS. Because of practical
considerations, the range of the simulated data does not reach beyond Re ≈ 1000.
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Figure 2. Maximum and minimum lift coefficient as a function of the Reynolds number, with
βD = 14 and ε = 0.25. Solid lines connect laboratory data from RS dashed lines computed data.

Although the simulated data compare favourably, there are significant discrepancies
in the maximum lift coefficient for the larger Reynolds numbers.

A number of issues prevented a detailed comparison over the full range of the RS
data, which extended to Re = 5000. First, because βD is fixed in the RS experiments,
the period must grow in proportion to the Reynolds number. Thus, increasing the
Reynolds number not only calls for higher resolution in the numerical computations
(because of the usual increase in range of scales, lack of dissipation, etc.), it also
requires larger domains in order to avoid periodic wrap-around, and longer simulation
times owing to the longer period. Secondly, as noted in RS, the experimental data
suffer from a low signal-to-noise ratio at lower Reynolds numbers, which makes it
difficult to obtain measurements in the range which is readily accessible numerically.
In fact, it was in part to circumvent these difficulties that we decided to fix Re and to
vary τ in the present study.

4.2. Qualitative aspects of the lift and drag

We computed lift and drag for three Reynolds numbers, Re = 100, 300 and 500, each
for a range of periods τ = 1–96. In addition, coefficients for τ = 200 were computed
at Re = 100 and 500, and for τ = 400 at Re = 100. The complete data are given in
the Appendix.

The gap between the sphere and the solid surface is itself another parameter in the
flow. How the lift and drag forces depend on the gap size will not be considered here,
deferring consideration of this question to another study. Unless otherwise noted,
the gap width in all cases is ε = 0.0156, corresponding to a case considered in RS,
hereinafter referred to as the ‘zero gap’ case.

Figure 3 (upper right-hand corner) shows the lift coefficient versus time for the
case (Re, τ) = (300, 24) over a single cycle after the flow has reached a persistent
periodic state. Similar lift versus time curves yield the minimum and maximum lift
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Figure 3. Lift coefficient as a function of time, upper right-hand corner, and corresponding
vorticity distribution and velocity profiles at x = ±1.5L. τ = 24, for Re = 300 and ε = 0.0156.

coefficients for each (Re, τ) pair. The results shown are typical in that the lift exhibits
a period that is half that of the driving period. Because of symmetry, the lift is the
same whether the base flow is in the positive or negative x-direction. Also shown are
selected plots of spanwise vorticity contours in the y = 0 plane, along with velocity
profiles at x = ±1.5. We note that the maximum lift roughly coincides with the
maximum base flow (c) and not with the point of vortex formation/ejection (a). In
frame (b), we see that the ejected vortex has a significant impact on the base profile.
Also visible in frame (a) is the ‘toe’ associated with the Stokes layer, in this case, at a
height of roughly y = 0.2. Frames (d ) and (e) show the flow conditions near the point
of minimum lift. We note that this occurs when the far-field flow is nearly zero, while
the near-wall flow has a non-trivial component. Thus, on the top of the sphere, the
pressure is essentially the stagnation pressure, while on the bottom it is lower because
of the Bernoulli effect. Note that in frames (d ) and (e) the flow reversal associated
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Figure 4. (a) Maximum drag coefficient, (b) maximum lift coefficient, as a function of period, for
Re = 100, 300, 500. Not shown: maximum drag coefficient at Re = 100 for τ = 400 is 0.5097, and
maximum lift coefficient at Re = 100 for τ = 400 is 0.1405.

with the alternating external pressure gradient (p0) is significantly enhanced in the
wake of the sphere, as a result of the momentum deficit there.

In figure 4(a), we plot the peak drag coefficient as a function of the period for
each of the Reynolds numbers considered. We note that the peak lift is not strongly
dependent on the Reynolds number over the range of values considered. The curves
are approximately hyperbolic, with CD approaching infinity as τ tends to zero. This
is because the externally applied driving pressure, p0, scales as τ−1 (3.1). Over the
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range of periods considered, the lowest computed drag coefficient was CD = 0.5097,
corresponding to Re = 100, τ = 400, for which the Stokes-layer thickness is δ = 0.886,
as computed from (2.7). In the limit τ → ∞, the drag coefficient must tend to zero,
because the Stokes-layer thickness scales as

√
τ/Re and thus the velocity near the

particle scales as
√
Re/τ. In this Stokes limit, the drag force scales linearly with the

near-particle velocity. Because the drag coefficient has U2 in the denominator, we
obtain CD = O(1/

√
Re/τ).

In figure 4(b), we plot the maximum lift coefficient as a function of τ. As in the
case of the drag, the dependence of lift on Re is mild. Also, for all values of (Re, τ)
considered, we have CL < CD . In contrast to the drag coefficient, the peak lift exhibits
a local maximum in the interval 10 6 τ 6 20. In addition, the peak lift is negative
for very small values of τ. The explanation for these features lies in the role of vortex
formation in the wake of the particle. For short periods, τ < 10, there is insufficient
time for a significant vortex to form behind the particle. This time can be estimated
if we assume that the length of a growing vortex is roughly half of the distance
travelled by a particle in the free stream. As shown in Honji & Taneda (1969), the
time evolution of the wake behind a cylinder exhibits a similar behaviour. Choosing
a characteristic vortex size of unity, we require the particle excursion amplitude to
be Lex = τ/2π ' 2, from which we conclude that τ > 12 for vortex formation to
become important. For very small values of τ, there is no time for viscous effects to
become important, and the pressure field is thus dominated by potential flow effects.
In this case, the flow is accelerated as it moves around the sphere, with a greater
degree of acceleration (and higher velocity) arising between the sphere and the wall
than occurs over the top of the sphere. Consequently, we can expect negative lift
at all points in the cycle because of a Bernoulli effect. However, as τ increases, the
gap region is the first to suffer the effects of viscocity, which includes the build-up
of a vortex in the wake of the particle. As the size of the vortex increases with τ,
the peak lift increases up to the point where the vortex is strong enough to detach
from the particle during flow reversal. Finally, as τ approaches infinity, we expect CL
to vanish, following the Stokes-layer argument above for CD . In this case, however,
we anticipate that the convergence will be faster than O(1/

√
Re/τ) since symmetry

arguments imply that Stokes flow can produce zero lift under these conditions. We
revisit this point in § 6.

To further understand the relationship between the peak lift and the period, we
plot in Figure 5(a) the phase of the peak minimum and maximum CL as a function
of τ for Re = 100. Velocity profiles over the corresponding phase interval are shown
in figure 5(b). The phase of the maximum CL crosses the 90◦ mark at approximately
the point corresponding to the lift peak in figure 4(b). For shorter periods, the
phase lags the 90◦ mark, indicating that peak lift occurs after the peak in the
base velocity, whereas for longer periods, the peak lift occurs prior to the peak in
the base velocity. The minimum lift curve, corresponding to the minimum peak in
the lift, exhibits a similar trend. The phase crosses the 0◦ degree mark at the same
period value. For short periods, the minimum lift occurs after the change in the
base-flow direction, whereas for longer periods it occurs prior to the change in flow
direction.

Figure 6(a) shows the evolution of the total lift with time, as well as the relative
strength of the viscous and pressure contributions, for the case Re = 300, τ = 3 and
ε = 0.25. As the flow settles to a steady-periodic state, the particle experiences a lift
force with a repetition rate that is twice the forcing frequency. For symmetric flow
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Figure 5. (a) Phase (degrees) of the peak *, minimum and �, maximum lift with respect to the
forcing as a function of τ, for Re = 100; (b) velocity profile as a function of phase.

patterns, two peak events occur because the lift is insensitive to the direction of the
flow. This is unlike the drag force, which will have a repetition rate that matches
the forcing frequency. For small values of τ the time average of the lift typically is
negative. Clearly, the Bernoulli mechanism that gives rise to the negative lift must
also be a function of the gap size. In fact, when the gap is small and the frequency of
forcing is sufficiently high, the particle can experience a negative lift, for all time, as
recorded in figure 4(b).

Lift signals may also occur with a repetition rate that matches the forcing frequency.
One such case is shown in figure 6(b), which indicates a non-symmetric flow pattern.
The flow parameters (Re, τ, ε) for figures 6(a) and 6(b) are the same. The difference
between these two cases is the choice of initial condition: in figure 6(a), the initial
fluid velocity was zero, whereas in figure 6(b), the initial velocity field was non-zero.
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Figure 6. Time dependence of the lift coefficient: (a) zero initial condition, (b) non-zero initial
condition. Re = 300, τ = 3 and ε = 0.25. *, total; ◦, viscous; ——, pressure.

These calculations indicate that initial conditions can play a significant role in the
magnitude and shape of the lift data sets. The effect can be a transient phenomenon,
but the case highlighted clearly shows it as a persistent condition. Although the flow
that leads to the anomaly in the lift was generated numerically, it is not ruled out
as a physically realizable flow. In fact, it was not difficult to set up numerically. It
arose in a sequence of computations in which we used a non-zero initial condition.
Figure 7 shows lift coefficients as a function of the period, for Re = 300 and ε = 0.25.
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Re γ B CL(τs) Error

100 0.6185 1.0000 0.4236 1.4× 10−3

300 0.9950 0.5244 0.4171 1.3× 10−3

500 0.9519 0.5676 0.4001 1.6× 10−3

Table 2. Optimal parameters for a least-squares fit of (6) to the lift datum for Re = 100.
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Figure 7. (a) Maximum and (b) minimum lift coefficient as a function of period τ, for Re = 300
and ε = 0.25.

Figure 7(a) plots the positive total lift coefficient and figure 7(b) the negative total lift
coefficient. The dashed curves represent the lift coefficient calculated with zero initial
conditions. The solid curves, on the other hand, are the result of using the solution
from the simulation at the previous value of τ as the initial condition. An examination
of the vorticity field corresponding to the solid curve calculations revealed that these
cases exhibit vortex trapping, in which a strong vortex (generated under prior flow
conditions) remains on one side of the particle throughout the cycle, giving rise to an
asymmetric flow pattern and the anomalous lift curves shown in figures 6 and 7.

4.3. Extrapolation and interpolation

To extend the present study to a wider range of parameters Re and τ, we use extrap-
olation and interpolation. The extrapolation of force datum in τ and interpolation in
Re will be described here and used later in order to consider the relevance of the lift
force to a problem of physical interest.

We first describe the extrapolation procedure for the lift force calculation. From
figure 4, we observe that each lift curve is characterized by a tail region where the
lift coefficient decays monotonically as a function of τ. Let τs denote a value of τ in
the vicinity of peak CL. We define the tail region by τ > τs. Based on the data, we
make a reasonable choice of τs = 32, beyond which the behaviour of the curves is
qualitatively similar for all curves, corresponding to the three Reynolds numbers. Let
τf denote the final τ considered (i.e. τf = 104 for Re = 100; τf = 96 for Re = 300 and
500). For each curve, we fit the lift data in this tail region to the rational function
F(τ, Re), given by

F(τ, Re) = CL(τs)

[
1− B +

B

(1 + s)γ

]
, (4.1)

where s = (τ− τs)/(τf − τs), and CL(τs) is the lift coefficient at τs.
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Re τ Extrapolation Simulation Relative error (%)

100 200 0.2011 0.2032 1.1
100 400 0.1382 0.1405 1.6
500 200 0.2396 0.2394 0.1

Table 3. Comparison of extrapolated and simulated values for the lift.

In table 2 we present the optimal fit parameters B and γ for each value of Re. The
table also shows the mean-square error between the functional form (4.1) and the
computed data, which provides a measure of the quality of the fit. The extrapolation
is performed on the data for each Reynolds number. This is required because it
is clear from the data that the lift coefficient curves are not self-similar in τ − Re
space. Hence, for each Re, there is a different function F . The functions F(τ, Re) are
used to extrapolate the lift data for larger values of τ. As a check on the quality of
the extrapolation we computed lift/drag data for large values of τ. In the case of
Re = 100, we calculated at τ = 200 and 400. For Re = 500, we calculated at τ = 200.
The comparisons are shown in table 3. Based on these comparisons, we conclude that
for moderate τ we can use the extrapolation to estimate the lift coefficient for points
outside of the computed range.

5. Discussion
We now turn to the question first posed in Rosenthal & Sleath (1986), namely, how

important lift forces are to sediment dynamics in the nearshore zone of the ocean.
We will revert to dimensional quantities, as these will help convey a more concrete
physical picture of the implications of the analysis. To make this assessment, we
compare the relative strength of the lift force to the buoyancy force.

For a given particle with diameter D and density ρ, in a time-harmonic flow
characterized by (T ,U, ρ0), the maximum lift force and the buoyancy force acting on
the particle are given by

FL = 1
2
ρ0AU

2CL

and

Fg = (ρ− ρ0)gV ,

where V = 1
6
πD3 is the volume and A = 1

4
πD2 is the cross-sectional area of the

spherical particle. Here, g is the acceleration due to gravity. The ratio is given by

RLg =
3ρ

4(ρ− ρ0)g

U2

D
CL(Re, τ). (5.1)

For specificity, we take the fluid as water; hence, ν = 10−6 m2 s−1, and ρ0 = 103 kg m−3.
Having sand particles in mind, we use ρ = 2.65ρ0, which roughly corresponds to the
density of quartz. For convenience, we set d = 10−3D, so that d is measured in
millimetres, and Re = 100r. Then, from (2.5)–(2.6), the scaling relations take the form

d = r/10,

T = (τ/100r)d2, (5.2)
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and the lift to buoyancy ratio takes the form

RLg ≈ 1.23
r2

d3
CL(r, τ). (5.3)

If we were to rely exclusively on the direct measurements of CL(r, τ), the range of
flows and particle sizes not only would be limited, but also could fall in a regime of
little physical interest. For example, consider the applicability of the data set measured
for a flow with Re = 100 and τ = 96. In this case, we measured CL = 0.2842. For which
flows (T ,U) and particles d would this lift data be applicable? From (5.2), we see that
(T ,U, d) must satisfy the relations Ud = 0.1 and T = 0.96d2. Suppose we consider
flows with a period of 4 s. Then the data set applies to a particle with diameter
d = 2.04 mm and a flow with U = 0.05 m s−1 (about 2 in s−1). The corresponding
value for RLg = 0.03. This is not a useful result, because we would not expect the
lift force to be an important factor for such gravel-sized particles under these flow
conditions. Suppose instead we start with a sand-sized particle, say d = 0.5 mm, and
ask, ‘For what flow conditions (T ,U) does the same lift data set apply?’ The period
would be approximately 0.24 s. Without pursuing the matter further, we observe that
wave periods this small are not relevant for nearshore sediment transport. This is yet
another example that illustrates the limited applicability of the computed data to an
oceanic setting.

As will be shown presently, other parameter limitations to the data exist. However,
the range restrictions are obviated, to a certain degree, by the extrapolation procedure
described in § 4.3. With the use of the extended values for CL, we can explore a
somewhat larger portion of (T ,U, d) parameter space.

We first determine the portion of (T ,U, d) space where the extended datum can be
applied. Here, we use the particle diameter as a parameter and display the restrictions
on U and T in terms of d. First, we consider the restriction on flow velocity resulting
from the range of Reynolds numbers used in the simulations. We observe from (5.2)
that we are restricted to flow velocities U for which

1

10d
6 U 6

1

2d
, (5.4)

in units of m s−1. For example, in the case of fine sand, d ≈ 0.25 mm, the velocity
range is restricted to U ∈ [0.4, 2] m s−1. For coarse sand, d = 1.0 mm, the velocity
range shifts to U ∈ [0.1, 0.5] m s−1. The whole velocity range for the smaller particle
is unrealistically high for nearshore wave conditions. For the coarser sand particle,
however, the range is reasonable for these nearshore conditions.

Next we consider the restrictions on the period T . From (5.2) we find that

τd2

500
6 T 6

τd2

100
. (5.5)

As noted, without the use of extrapolation, this relation would severely restrict the
periods for which the data are applicable. For example, with d = 1.0 mm and τ = 96,
T would be restricted to T < 0.96 s. For nearshore flow conditions, we expect periods
in the range 1–15 s. Thus, for d = 1.0 mm, corresponding to coarse sand, values for
the lift at τ = 800 would provide a range for the period T ∈ [1.6, 8] s. When fine sand
(d = 0.25 mm) is considered, then in order to consider a wave with period T = 8 s,
we would need lift data corresponding to τ = 12 800. Such large values for τ are well
beyond the capability of direct numerical simulations.

As noted earlier, we verified that extrapolations of CL out to τ = 400 agreed with
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d (mm) T (s) U (m s−1)

0.25 [0.06, 2.50] [0.40, 2.0]
0.50 [0.24, 10.0] [0.20, 1.0]
0.75 [0.54, 22.5] [0.13, 0.67]
1.00 [0.96, 40.0] [0.10, 0.50]

Table 4. Accessible regions of T–U space using extrapolation.
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Figure 8. RLg ≈ 2.0 contours for particle sizes d = 0.50–0.95 mm.

direct simulations to within 1–2%. Based on this observation, let us consider τ = 4000
as an upper limit on the non-dimensional period. Table 4 shows the regions in the
(T ,U)-plane for the extrapolation data for a given particle diameter. The qualitative
particle ranges are medium for ≈ 0.25 mm, coarse for 0.50 mm and very coarse for
1.00 mm. The table reiterates the fact that for small particles, the accessible range of
velocities is higher and the range of periods is lower than would be typical of the
oceanic setting. Even this moderate choice for peak τ, however, allows us to consider
the importance of lift for medium- and larger-sized sand particles. Thus, we are able
to extend the range of particle sizes considered by RS.

When comparing the relative importance of the lift force with the buoyancy force,
we would like to determine what range of (T ,U), for a given particle size, leads to an
RLg which reflects the dominance of the lift force over the buoyant force. We are not
concerned as much in determining exactly what velocities lead to RLg greater than
one, but instead, whether for a given particle size there is a range of velocities of
comparable magnitude to those found in the oceanic setting, that lead to a dominance
of the lift force over the buoyant force. To this end, we plot the values of RLg ≈ 2.0
in figure 8 for d in the range 0.50–0.95 mm. The region below each curve corresponds
to RLg < 2. For smaller particle sizes, an obvious reduction in the velocity is required
to achieve RLg = 2.

Finally, we can relate the estimates on the ratio of the lift to buoyancy force to
wave conditions prevalent in the nearshore. Gravity waves obey a dispersion relation
of the form

ω2 = gk tanh(kh), (5.6)

where k is the wavenumber of the waves, and ω is the frequency. These waves are
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τ Min. lift Max. lift Left drag Right drag

1.0000 −0.2589 0.0472 −16.6552 16.6593
2.0000 −0.2152 0.1735 −8.9285 8.9256
4.0000 −0.1754 0.3235 −4.9743 4.9741
6.0000 −0.1197 0.4034 −3.6347 3.6345
8.0000 −0.0682 0.4465 −2.9751 2.9751

10.0000 −0.0288 0.4683 −2.5858 2.5857
12.0000 −0.0022 0.4779 −2.3244 2.3239
14.0000 0.0133 0.4801 −2.1325 2.1317
16.0000 0.0209 0.4782 −1.9835 1.9822
24.0000 0.0176 0.4527 −1.6046 1.6030
32.0000 0.0036 0.4236 −1.3943 1.3912
40.0000 −0.0077 0.3971 −1.2725 1.2665
48.0000 −0.0152 0.3744 −1.1914 1.1842
56.0000 −0.0197 0.3547 −1.1293 1.1216
64.0000 −0.0223 0.3376 −1.0796 1.0693
72.0000 −0.0235 0.3226 −1.0353 1.0277
80.0000 −0.0239 0.3093 −0.9978 0.9903
96.0000 −0.0236 0.2842 −0.6438 0.9276

104.0000 −0.0235 0.2760 −0.9050 0.9051
200.0000 −0.0145 0.2032 −0.6989 0.6989
400.0000 −0.0069 0.1405 −0.5105 0.5097

Table 5. For a given period τ, maximum and minimum lift over a cycle, maximum left and right
drag over a cycle. Re = 100.
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Figure 9. Contours of wave amplitude A (m) in water of depth (a) h = 1.0 m and (b) h = 4.0 m.

assumed to be travelling on the surface of a body of water of depth h. The relationship
between the wave amplitude A, the wave period T and the orbital velocity U in the
neighbourhood of the bottom is given by

A =
1

2π
TU sinh(kh). (5.7)

Using (5.6) and (5.7), we plot in figure 9 the dependence of the amplitude of the
wave on the orbital velocity and the period for h = 1 m and h = 4 m. As expected,
the deeper the water column, the higher the wave amplitude required to generate
a lift that is comparable to, or bigger than, the gravitational force. From figures 8
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τ Min. lift Max. lift Left drag Right drag

1.0000 −0.4271 −0.0521 −15.2481 15.2480
2.0000 −0.4444 0.0802 −7.9797 7.9796
3.0000 −0.4737 0.2093 −5.5148 5.5145
4.0000 −0.4939 0.3142 −4.2844 4.2841
5.0000 −0.4757 0.3930 −3.5557 3.5549
6.0000 −0.4384 0.4464 −3.0678 3.0665
7.0000 −0.3933 0.4821 −2.7274 2.7260
8.0000 −0.3434 0.5060 −2.4958 2.4941

10.0000 −0.2346 0.5302 −2.1857 2.1838
12.0000 −0.1341 0.5343 −1.9698 1.9697
14.0000 −0.0720 0.5281 −1.7996 1.7993
16.0000 −0.0456 0.5167 −1.6589 1.6596
24.0000 −0.0005 0.4601 −1.2852 1.2860
32.0000 0.0106 0.4171 −1.0672 1.0685
40.0000 0.0069 0.3894 −0.9627 0.9568
48.0000 −0.0011 0.3720 −0.9123 0.9056
56.0000 −0.0097 0.3583 −0.8748 0.8684
64.0000 −0.0185 0.3461 −0.8450 0.8385
72.0000 −0.0260 0.3349 −0.8205 0.8138
80.0000 −0.0327 0.3245 −0.7996 0.7928
96.0000 −0.0430 0.3062 −0.7648 0.7578

Table 6. For a given period τ, maximum and minimum lift over a cycle, maximum left and right
drag over a cycle. Re = 300.

and 9, we can deduce the wave conditions required to lift a particle of a given size. For
example, for a particle size of 0.85 mm and a period of 6 s, we see that a 15 cm wave
would be required to have RLg ≈ 2 in 1.0 m of water, whereas a 30 cm wave would be
required in 4.0 m. The overall conclusion, as suggested by these estimates, is that lift
forces can be important in the nearshore region, since waves of reasonable amplitude
for this oceanic region can produce RLg values that easily reflect the importance of
the lift force.

6. Concluding remarks
In this study, we computed the lift and drag force on a sphere resting on a smooth

wall subjected to the oscillatory motion of an incompressible fluid over a Reynolds
number range of 100–500. The data sets were obtained from simulations of the
Navier–Stokes equations in three dimensions. These simulations were inspired by
laboratory experiments in Rosenthal & Sleath (1986). In these experiments, the lift
forces were obtained for particles that were of substantial size. Our simulations are
aimed at extending the lift and drag data from the experiments to lower values of the
Reynolds number, a flow regime in which RS report poor signal to noise ratios from
their experimental rig.

The drag coefficient CD obeys certain asymptotic characteristics, namely, a variation
in magnitude that is inversely proportional to the Keulegan–Carpenter parameter τ,
for small values of τ, and scales as (Reτ)−1/2 for large values of τ. The peak lift
coefficient, CL, was found to be negative for small values of τ, to climb to a maximum
with increasing τ and to asymptotically decay at a rate faster than (Reτ)−1/2. This
observation is consistent with an estimate due to Asmolov & McLaughlin (1999).
Although this estimate is derived under the assumption that the particle is not
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τ Min. lift Max. lift Left drag Right drag

1.0000 −0.5001 −0.0698 −14.7512 14.7509
2.0000 −0.5424 0.0698 −7.6517 7.6526
3.0000 −0.5913 0.2042 −5.2563 5.2555
4.0000 −0.5838 0.3204 −4.0841 4.0836
5.0000 −0.5547 0.4040 −3.3620 3.3610
6.0000 −0.5086 0.4617 −2.8771 2.8760
7.0000 −0.4578 0.5032 −2.5659 2.5635
8.0000 −0.3990 0.5308 −2.3691 2.3673

10.0000 −0.2589 0.5554 −2.0970 2.0962
12.0000 −0.1306 0.5535 −1.8986 1.8983
14.0000 −0.0953 0.5395 −1.7415 1.7404
16.0000 −0.0815 0.5239 −1.6041 1.6025
24.0000 0.0147 0.4624 −1.2348 1.2360
32.0000 0.0183 0.4001 −0.9991 1.0010
48.0000 0.0169 0.3552 −0.8319 0.8274
56.0000 0.0024 0.3413 −0.7964 0.7923
64.0000 −0.0067 0.3277 −0.7689 0.7647
72.0000 −0.0125 0.3164 −0.7466 0.7424
80.0000 −0.0175 0.3066 −0.7278 0.7237
96.0000 −0.0274 0.2899 −0.6972 0.6933

200.000 −0.0416 0.2394 −0.6199 0.6199

Table 7. For a given period τ, maximum and minimum lift over a cycle, maximum left and right
drag over a cycle. Re = 500.

affected by the presence of a neighbouring wall, it provides a lower bound on the lift.
The estimate states that, in the limit τ→∞, the lift coefficient scales as Re1/4τ−3/4.

RS report that CL can reach values comparable to values of CD . Our calculations
do not support such a conclusion for the range of parameters considered. We do
agree, however, with their assessment that the Keulegan–Carpenter number greatly
influences the formation of vorticity, a crucial aspect of lift. This strong dependency
inspired us to use τ, rather than the Reynolds number, as the main parameter in the
calculations.

With the aid of extrapolation, we have also demonstrated that lift can be signif-
icant in the dynamics of sediment of the nearshore zone. However, as Cherukat &
McLaughlin (1993) and Cherukat, McLaughlin & Graham (1994) report, particle ro-
tation significantly affects the lift force on particles close to a solid surface. Although
the flow regime and the type of flow considered in their study is different from the
one under consideration here, it leads us to be more tentative about the significance
of the lift force in the oceanic setting. A stronger conclusion will be made once our
calculations on a freely moving particle in oscillatory boundary flow are analysed.

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, US Department of Energy, under Contract W-31-109-Eng-38. We also thank
the Faculty Research Participation program, administered by DEP, at Argonne Na-
tional Laboratory, which was instrumental in enabling the collaboration that resulted
in this study.

Appendix. Lift and drag data
Tables 5–7 give the raw data from the simulations.
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